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Some Logistics
● Users are muted upon joining Zoom (can unmute to speak)
● Please change your name in Zoom session

○ to: first_name last_name 
○ Click “Participants”, then “More” next to your name to rename

● Click the CC button to toggle captions and View Full Transcript
● GDoc is used for Q&A (instead of Zoom chat)

○ https://tinyurl.com/QA-intro-nersc-resources
● Slides and videos will be available on the Training Event page 

○ https://www.nersc.gov/users/training/events/nersc-resources-june-2021/
● Apply for a training account if no NERSC account yet

○ https://iris.nersc.gov/train, and use the 4-letter code "aMAa"
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Outline
● NERSC and Systems Overview
● Connecting to NERSC
● File Systems 
● Software Environment / Building Applications
● Running Jobs 
● Data Analytics Software and Services
● NERSC Online Resources
● Hands-on: Compiling and Running Jobs 



  

NERSC and Systems Overview
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NERSC is the Mission HPC Computing Center for 
the DOE Office of Science
● NERSC deploys advanced HPC and data systems for the 

broad Office of Science community
● NERSC staff provide advanced application and system 

performance expertise to users
● Approximately 7,000 users and 800 projects
● Over 2,000 publications cite using NERSC resources per 

year
● Founded in 1974, focused on open science
● Division of Lawrence Berkeley National Laboratory
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NERSC Systems Roadmap

                                            

2013

NERSC-7: 
Edison
Multicore 
CPU

NERSC-8: Cori 
Manycore CPU
NESAP Launched: 
transition applications 
to advanced 
architectures

2016

2024

 NERSC-9: 
CPU and GPU nodes 
Continued transition of 
applications and support 
for complex workflows

2021

NERSC-10:
Exa system

2028

Increasingly energy-efficient architectures

NERSC-11:
Beyond
Moore
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Cori Brings HPC and Data Together

Phase I: 2388 x 32-core Intel Xeon “Haswell” 128 GB DDR4
Also known as “Data Partition”   (76,416 cores total)

Phase II: 9688 x 68-core Intel Xeon Phi “KNL” 96 GB DDR4 + 16 GB MCDRAM
                (658,784 total cores)

Gerty Cori: Biochemist and first American woman to win a Nobel Prize in science

Cori: #20 in Nov 2020 (#5 in Nov 2016) Top 500 list
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NERSC-9 is named after Saul Perlmutter
• Shared 2011 Nobel Prize in Physics 

for discovery of the accelerating 
expansion of the universe.

• Works at LBL, as a NERSC user

• Supernova Cosmology Project, lead 
by Perlmutter, was a pioneer in using 
NERSC supercomputers combine 
large scale simulations with 
experimental data analysis 

• Login “saul.nersc.gov”

First NERSC system designed to 
meet needs of both large scale 
simulation and data analysis from 
experimental facilities
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Perlmutter -- an HPE Cray EX System
Phase I: Arrived, Nov 2020 -Mar 2021

● 1,536 GPU-accelerated nodes
● 1 AMD “Milan” CPU + 4 NVIDIA A100 GPUs 

per node
● 256 GB CPU memory and 40 GB GPU high BW 

memory
● 35 PB FLASH scratch file system
● User access and system management nodes

Phase II Addition: Arrives later 2021
● 3,072 CPU only nodes
● 2 AMD “Milan” CPUs per node
● 512 GB memory per node
● Upgraded high speed network
● CPU partition will match or exceed 

performance of entire Cori system

● Perlmutter dedication was on May 27

● NERSC staff are continuously configuring the 
Phase 1 system

● Users will be enabled in multiple phases
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NERSC Systems

Cori
9,600 Intel Xeon Phi “KNL” manycore nodes
2,000 Intel Xeon “Haswell” nodes
700,000 processor cores, 1.2 PB memory
Cray XC40 / Aries Dragonfly interconnect

28 PB
Scratch

700 GB/s

2 PB
Burst Buffer

1.5 TB/s

75 PB
/cfs

275 TB
/home

100 GB/s

5 GB/s

DTNs, Spin, Gateways

2 x 10 Gb/s
2 x 100 Gb/s
SDN

HPSS 
Tape 
Archive
~200 PB

50 GB/s

Ethernet & IB Fabric
Science Friendly Security
Production Monitoring

Power Efficiency

WAN

NERSC Systems



  

Connecting to NERSC
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Multi-Factor Authentication (MFA) and sshproxy
● NERSC password + OTP ("One-Time Password")

○ OTP obtained via the “Google Authenticator” app on your 
smartphone

○ Alternative/backup option: Authy on desktop https://authy.com/
● MFA is used in login to NERSC systems, web sites, and 

services
○ Setup MFA https://docs.nersc.gov/connect/mfa/

● sshproxy.sh creates a short-term certificate
○ Run sshproxy.sh once, then you can ssh to NERSC systems for 

the next 24 hours before being asked for password+OTP again
○ https://docs.nersc.gov/connect/mfa/#sshproxy

https://docs.nersc.gov/connect/mfa/
https://docs.nersc.gov/connect/mfa/#sshproxy
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SSH and MFA Examples
<laptop>$ ssh -l elvis cori.nersc.gov
…
Login connection to host cori01 :
Password + OTP: 

You will login to one of the login nodes (12 on 
Cori).

To allow X-forwarding to access visualization 
programs,  use the “-Y” flag:
localhost% ssh -l elvis -Y cori.nersc.gov
         e/elvis> module load matlab
         e/elvis> matlab 
               <MATLAB starts up>
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Connecting to NERSC: NX 
● NERSC recommends using NX instead 

of SSH X-forwarding since NX is faster 
and more reliable

● NX is a service for Accelerated X
● NX also has the benefit of long lasting 

terminal sessions that can survive 
between lost internet connections
○ Can reconnect later, even from a 

different location or computer
● Download and install the Client software: 

NoMachine
○ https://docs.nersc.gov/connect/nx
○ Works on Window/Mac/Linux

don't save the password (it 
changes every login!)

MFA OTP immediately after 
password (no spaces)

https://docs.nersc.gov/connect/nx
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NoMachine
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Terminal in Jupyter
You can access Cori from any web browser, via https://jupyter.nersc.gov 

Terminal

https://jupyter.nersc.gov


  

File Systems and Data 
Management / Transfer
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Simplified NERSC File Systems

Memory

Burst Buffer

Scratch

Community

HPSS

Performance

Capacity

Global Common

Global Home

1.8 PB SSD Burst Buffer on Cori
Cray Datawarp 1.8 TB/s, 
temporary for job or campaign

28 PB (Cori) HDD Scratch
Lustre 700 GB/s, 
temporary (12 wk purge)

157 PB HDD Community
Spectrum Scale (GPFS)
150 GB/s, permanent

150 PB Tape Archive
HPSS Forever

20 TB SSD Software
Spectrum Scale
Permanent
Faster compiling / Source Code
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Global File Systems 
 Global Home
● Permanent, relatively small 

storage
● Mounted on all platforms
● NOT tuned to perform well for 

parallel jobs
● Quota cannot be changed
● Snapshot backups (7-day history)
● Perfect for storing data such as 

source code, shell scripts

 Community File System (CFS)
● Permanent, larger storage
● Mounted on all platforms
● Medium performance for parallel 

jobs
● Quota can be changed
● Snapshot backups (7-day history)
● Perfect for sharing data within 

research group
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Local File Systems 
 Scratch
● Large, temporary storage
● Optimized for read/write 

operations, NOT storage
● Not backed up
● Purge policy (12 weeks)
● Perfect for staging data and 

performing computations

 Burst Buffer
● Temporary storage
● High-performance SSD file 

system
● Perfect for getting good 

performance in I/O-constrained 
codes
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HPSS: Long Term Storage System

● High-Performance Storage System
● Archival storage of infrequently accessed data
● Use hsi and htar to put/get files between NERSC 

computational systems and HPSS
● https://docs.nersc.gov/filesystems/archive/ 

https://docs.nersc.gov/filesystems/archive/


  

Software Environment and  
Building Applications
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Software
● Cray supercomputers OS is a version of Linux
● Compilers are provided on machines
● Libraries: many libraries provided by vendor and by NERSC
● Applications: NERSC compiles and supports many software 

packages (such as chemistry and materials sciences 
packages) for our users

● DOE Extreme-scale Scientific Software Stack (E4S):  
open-source projects, including xSDK, dev-tools, 
math-libraries, compilers, and more

●
●
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Modules Environment
● Modules are used to manage the user environment

○ https://docs.nersc.gov/environment/#nersc-modules-environment
module 

list To list the modules in your environment

avail 

avail -S

To list available modules
     To see all available modules: % module avail
     To see all available netcdf modules: % module avail –S netcdf

load/unload To load or unload module

show/display To see what a module loads

whatis Display  the  module file information

swap/switch To swap two modules
For example: to swap architecture target from Haswell to KNL
% module swap craype-haswell craype-mic-knl

help General help:  $module help
Information about a module: $ module help PrgEnv-cray

t

https://docs.nersc.gov/environment/#nersc-modules-environment
https://docs.nersc.gov/environment/#nersc-modules-environment
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Default Loaded Modules  

5) Compiler    8) Cray Scientific Libraries  
20) Programing Environment  21) Target architecture Driver  22) MPI Libraries

               

yunhe@cori03:~> module list
Currently Loaded Modulefiles:
  1) modules/3.2.11.4                                 13) 
gni-headers/5.0.12.0-7.0.1.1_6.27__g3b1768f.ari
  2) nsg/1.2.0                                        14) xpmem/2.2.20-7.0.1.1_4.8__g0475745.ari
  3) altd/2.0                                         15) job/2.2.4-7.0.1.1_3.34__g36b56f4.ari
  4) darshan/3.1.7                                    16) dvs/2.12_2.2.156-7.0.1.1_8.6__g5aab709e
  5) intel/19.0.3.199                                 17) alps/6.6.57-7.0.1.1_5.10__g1b735148.ari
  6) craype-network-aries                             18) rca/2.2.20-7.0.1.1_4.42__g8e3fb5b.ari
  7) craype/2.6.2                                     19) atp/2.1.3
  8) cray-libsci/19.06.1                              20) PrgEnv-intel/6.0.5
  9) udreg/2.3.2-7.0.1.1_3.29__g8175d3d.ari           21) craype-haswell
 10) ugni/6.0.14.0-7.0.1.1_7.32__ge78e5b0.ari         22) cray-mpich/7.7.10
 11) pmi/5.0.14                                       23) craype-hugepages2M
 12) dmapp/7.1.1-7.0.1.1_4.43__g38cf134.ari



26

Cross-Compile is Needed
● Cori: Haswell compute nodes and KNL compute nodes
● All Cori login nodes are Haswell nodes
● We need to cross-compile

○ Directly compile on KNL compute nodes is very slow 
○ Compiles on login nodes; Executables runs on compute nodes

● Recommends to build separate binaries for each architecture 
to take advantage of optimizations unique to processor type
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Software Environment
● Available compilers: Intel, GNU, Cray
● Use compiler wrappers to build.  It calls native compilers for each 

compiler (such as ifort, mpiicc, etc.) underneath. 
○ Do not use native compilers directly.
○ ftn for Fortran codes:  ftn my_code.F90
○ cc for C codes: cc my_code.c
○ CC for C++ codes: CC my_code.cc

● Compiler wrappers add header files and link in MPI and other 
loaded Cray libraries by default
○ Builds applications dynamically by default.  Can add “-static” to build 

statically if chosen
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How to Compile for KNL
● The default loaded architecture target module is 

“craype-haswell” on the Haswell login nodes.
○ This module sets CRAY_CPU_TARGET to haswell

● Best recommendation to build for KNL target
○ module swap craype-haswell craype-mic-knl
○ The above sets CRAY_CPU_TARGET to mic-knl



29

Building Simple Test Program (1)
● To build on Cori Haswell:

○ Using default Intel compiler:
ftn -o mytest mytest_code.F90

○ Using Cray compiler:
module swap PrgEnv-intel PrgEnv-cray
ftn -o mytest mytest_code.F90
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Building Simple Test Program (2)
● To build on Cori KNL

○ Using default Intel compiler
module swap craype-haswell craype-mic-knl
cc -o mytest mytest_code.c

○ Using Cray compiler
module swap PrgEnv-intel PrgEnv-cray
module swap craype-haswell craype-mic-knl
cc -o mytest mytest_code.c



  

Running Jobs
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Jobs at NERSC
● Most are parallel jobs (10s to 100,000+ cores)
● Also a number of “serial” jobs

○ Typically “pleasantly parallel” simulation or data analysis
● Production runs execute in batch mode
● Our batch scheduler is SLURM
● Typical run times are a few to 10s of hours 

○ Limits are necessary because of MTBF and the need to 
accommodate 7,000 users’ jobs
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Login Nodes and Compute Nodes
● Login nodes (external)

○ Edit files, compile codes, submit batch jobs, etc.
○ Run short, serial utilities and applications
○ Cori has Haswell login nodes

● Compute nodes
○ Execute your application
○ Dedicated resources for your job
○ Cori has Haswell and KNL compute nodes
○ Binaries built for Haswell can run on KNL nodes, but not vice 

versa
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Launching Parallel Jobs with Slurm

sr
un

sbatch
or

salloc

Login Node

Head Compute 
Node 

Other Compute Nodes 
allocated to the job

Head compute node:
● Runs commands in batch script
● Issues job launcher “srun” to start parallel 

jobs on all compute nodes (including itself)

Login node:
● Submit batch jobs via sbatch or salloc
● Please do not issue “srun” from login nodes
● Do not run big executables on login nodes
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My First “Hello World” Program
my_batch_script:

#!/bin/bash
#SBATCH -q debug
#SBATCH -N 2
#SBATCH -t 10:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob
srun -n 64 ./helloWorld

To run via batch queue
% sbatch my_batch_script
To run via interactive batch
% salloc -N 2 -q interactive -C haswell -t 10:00 
<wait_for_session_prompt. Land on a compute node>
% srun -n 64 ./helloWorld
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Sample Cori Haswell Batch Script - MPI
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob

srun -n 1280 -c 2 --cpu_bind=cores ./mycode.exe

● There are 64 logical CPUs (the number Slurm sees) on each node
● “-c” specifies #_logical_CPUs to be allocated to each MPI task
● --cpu-bind is critical especially when nodes are not fully occupied

32 MPI tasks per node
in this example
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    Sample Cori Haswell Batch Script - Hybrid 
MPI/OpenMP

#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C haswell

export OMP_NUM_THREADS=8
export OMP_PROC_BIND=true
export OMP_PLACES=threads

srun -n 160 -c 16  --cpu-bind=cores ./mycode.exe

● Set OMP_NUM_THREADS
● Use OpenMP standard settings for process and thread affinity
● Again, “-c” specifies #_logical_CPUs to be allocated to each MPI task

○ with 4 MPI tasks per node on Haswell, set 64 logical CPUs /4 =16 for ”-c”
○ “-c” value should be >= OMP_NUM_THREADS

4 MPI tasks per node    
     in this example
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Process / Thread / Memory Affinity
● Correct process, thread and memory affinity is critical for getting 

optimal performance on Cori Haswell and KNL
○ Process Affinity: bind MPI tasks to CPUs
○ Thread Affinity: bind threads to CPUs allocated to its MPI process
○ Memory Affinity: allocate memory from specific NUMA domains

● Both -c xx and --cpu-bind=cores are essential, otherwise 
multiple processes may land on the same core, while other 
cores are idle, hurting performance badly

● Pay special attention on KNL, usually we waste (or aside for 
OS) 4 cores on purpose, to allow number of logical cores 
distributed evenly for each MPI rank

● https://docs.nersc.gov/jobs/affinity/

https://docs.nersc.gov/jobs/affinity/
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Cori Haswell Compute Nodes

● Each Cori Haswell node has 2 Intel Xeon 16-core Haswell processors
○ 2 NUMA domains (sockets) per node, 16 cores per NUMA domain. 2 hardware 

threads per physical core. 
○ NUMA Domain 0: physical cores 0-15 (and logical cores 32-47)                         

NUMA Domain 1: physical cores 16-31 (and logical cores 48-63)
● Memory bandwidth is non-homogeneous among NUMA domains

To obtain processor info:

Get on a compute node:
% salloc -N 1 -C …

Then:
% numactl -H
or % cat /proc/cpuinfo
or % hwloc-ls
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Cori KNL Example Compute Nodes
● A Cori KNL node has 68 cores/272 CPUs, 96 GB DDR memory, 16 GB high bandwidth on 

package memory (MCDRAM)
● Default mode is: quad, cache

● A quad,cache node (default setting) has only 1 NUMA node with all CPUs 
on the NUMA node 0 (DDR memory). MCDRAM is hidden from the 
“numactl -H” result since it is a cache.
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Sample Job Script to Run on KNL Nodes

● Again, specify #_logical_CPUs to be allocated to each MPI task
○ with 64 MPI tasks per node on KNL, set 256 logical CPUs /64 =4 for ”-c”
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Use “shared” QOS to Run Serial Jobs
● The “shared” QOS allows multiple executables from different users to share a 

node
● Each serial job run on a single physical core of a “shared” node
● Up to 32 (Cori Haswell) jobs from different users depending on their memory 

requirements
#SBATCH -q shared
#SBATCH -t 1:00:00
#SBATCH --mem=4GB
#SBATCH -C haswell
#SBATCH -J my_job
./mycode.x

● Only available on Cori Haswell, charged by a fraction of a node used
● https://docs.nersc.gov/jobs/best-practices/#serial-jobs

https://docs.nersc.gov/jobs/best-practices/#serial-jobs
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Use salloc to Run Debug and Interactive Jobs
● You can run small parallel jobs interactively on dedicated nodes
● Debug

○ Max 512 nodes, up to 30 min
% salloc -N 20 -q debug -C haswell -t 30:00

● Interactive  (highly recommend to use this!!)
○ Instant allocation (get nodes in 6 min or reject)
○ Max walltime 4 hrs, up to 64 nodes total on Cori per project 

% salloc -N 2 -q interactive -C knl -t 2:00:00
○ More information (such as how to find out who in your project is using)

■ https://docs.nersc.gov/jobs/examples/#interactive
■ https://docs.nersc.gov/jobs/interactive/

https://docs.nersc.gov/jobs/examples/#interactive
https://www.nersc.gov/users/live-status/
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Advanced Running Jobs Options
● Bundle jobs (multiple “srun”s in one script, sequentially or 

simultaneously)
● Use job dependency features to chain jobs 
● Use Job Arrays to manage collections of similar jobs 
● Run variable-time jobs and “flex” qos to run longer jobs 
● Use workflow tools to manage jobs
● Use Burst Buffer for faster IO
● Use Shifter for jobs with custom user environment
● Use “xfer” for transferring to/from HPSS
● Use “bigmem” for large memory jobs       
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Bundle Jobs
Multiple Jobs Sequentially:
#!/bin/bash 
#SBATCH -q regular 
#SBATCH -N 100  
#SBATCH -t 12:00:00 
#SBATCH -J my_job 
#SBATCH -o my_job.o%j 
#SBATCH -L project,SCRATCH
#SBATCH -C haswell
 
srun -n 3200 ./a.out 
srun -n 3200 ./b.out 
srun -n 3200 ./c.out 

Multiple Jobs Simultaneously:
#!/bin/bash
#SBATCH -q regular 
#SBATCH -N 9       
#SBATCH -t 12:00:00 
#SBATCH -J my_job 
#SBATCH -o my_job.o%j 
#SBATCH -L project
#SBATCH -C haswell

srun -n 44 -N 2 -c2 --cpu-bind=cores ./a.out & 
srun -n 108 -N 5 -c2 --cpu-bind=cores ./b.out & 
srun -n 40 -N 2 -c2 --cpu-bind=cores ./c.out & 
wait

● Request total number of nodes needed
● No applications are shared on the same nodes
● Make sure to use “&” (otherwise run in sequential) and 

“wait” (otherwise job exit immediately)
● https://docs.nersc.gov/jobs/examples/#multiple-parallel-jo

bs-simultaneously

● Request largest number of nodes 
needed

● https://docs.nersc.gov/jobs/examples/#
multiple-parallel-jobs-sequentially

https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially
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Dependency Jobs
cori% sbatch job1 
Submitted batch job 1655447 

cori06% sbatch --dependency=afterok:5547 job2 
or 
cori06% sbatch --dependency=afterany:5547 job2

cori06% sbatch job1 
submitted batch job 1655447

cori06% cat job2 
#!/bin/bash 
#SBATCH -q regular 
#SBATCH -N 1 
#SBATCH -t 1:30:00 
#SBATCH -d afterok:1655447 
#SBATCH -C haswell 
srun -n 16 -c 4 ./a.out 

cori06% sbatch job2

https://docs.nersc.gov/jobs/example
s/#dependencies

https://docs.nersc.gov/jobs/examples/#dependencies
https://docs.nersc.gov/jobs/examples/#dependencies
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Job Arrays
#!/bin/bash 
#SBATCH -q regular 
#SBATCH -N 1
#SBATCH -t 1:00:00 
#SBATCH --array=1-10 
#SBATCH -L SCRATCH 
#SBATCH -C haswell

cd test_$SLURM_ARRAY_JOB_ID  
srun ./mycode.exe

● Better managing jobs, not necessary 
faster turnaround

● Each array task is considered a single 
job for scheduling

● Use $SLURM_ARRAY_JOB_ID for 
each individual array task

https://docs.nersc.gov/jobs/examples/#job-arrays

https://docs.nersc.gov/jobs/examples/#job-arrays
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Use Workflow Management Tools
● These tools can help data-centric science to automate moving data, 

multi-step processing, and visualization at scales. 
● Please do not do below!  

for i = 1, 10000

     srun -n 1 ./a.out

It is inefficient and overwhelms Slurm scheduler
● Available workflow tools include: GNU parallel, Taskfarmer, 

Fireworks, Nextflow, Papermill, etc. 
● One usage case is to pack large number of serial jobs into one script
● https://docs.nersc.gov/jobs/workflow-tools/

https://docs.nersc.gov/jobs/workflow-tools/
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GNU Parallel Is Better Than Shared QOS
elvis@cori07:~> module load parallel

elvis@cori07:~> seq 1 5 | parallel -j 2 'echo \                                 
> "Hello world {}!"; sleep 10; date'
Hello world 1!
Thu Jun 11 00:21:00 PDT 2020
Hello world 2!
Thu Jun 11 00:21:00 PDT 2020
Hello world 3!
Thu Jun 11 00:21:10 PDT 2020
Hello world 4!
Thu Jun 11 00:21:10 PDT 2020
Hello world 5!
Thu Jun 11 00:21:20 PDT 2020
elvis@cori07:~>

● Packed jobs have massively 
reduced total queue wait
○ Can also pack single-node 

tasks into multiple node jobs
● No risk of Slurm overload
● Run combinations of tasks in 

parallel and sequence
● Easy input substitution

○ If you need it, much more 
power is available

● Superior to task arrays, too
● https://docs.nersc.gov/jobs/workflow/

gnuparallel/

https://docs.nersc.gov/jobs/workflow/gnuparallel/
https://docs.nersc.gov/jobs/workflow/gnuparallel/
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NERSC Job Script Generator
https://my.nersc.gov/script_generator.php
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Monitoring Your Jobs
● Jobs are waiting in the queue until resources are available
● Overall job priorities are a combination of QOS, queue wait time, job size, 

wall time request, etc. 
● You can monitor with

○ squeue: Slurm native command 
○ sqs: NERSC custom wrapper script
○ sacct: Query Completed and Pending Jobs
○ https://docs.nersc.gov/jobs/monitoring/

● On the web
○ https://my.nersc.gov

■ Cori Queues, Queue backlogs, Queue Wait Times (statistics data)
○ https://www.nersc.gov/users/live-status/ 🡺 Queue Look
○ https://iris.nersc.gov  the “Jobs” tab

https://docs.nersc.gov/jobs/monitoring/
https://my.nersc.gov/
https://www.nersc.gov/users/live-status/
https://iris.nersc.gov
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Cori Haswell Queue Policy (as of June 2021)
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Cori KNL Queue Policy (as of June 2021)
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Tips for Getting Better Throughput
● Line jumping is allowed, but it may cost more (“premium” QOS)
● Submit shorter jobs, they are easier to schedule

○ Checkpoint to break up long jobs, use variable time and “flex” QOS
○ Short jobs can take advantage of ‘backfill’ opportunities
○ Run short jobs just before maintenance

● Make sure the wall clock time you request is accurate
○ Larger shorter jobs are easier to schedule than long smaller jobs
○ Many users unnecessarily request the largest wall clock time possible as 

default
● Check queue backlogs and queue wait times

○ https://my.nersc.gov/backlog.php
○ https://my.nersc.gov/queuewaittimes.php

https://my.nersc.gov/backlog.php
https://my.nersc.gov/queuewaittimes.php
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Large Jobs Considerations
● sbcast your executables to compute nodes before srun

sbcast --compress=lz4 /path/to/exe /tmp/exe

srun /tmp/exe

https://docs.nersc.gov/jobs/best-practices/#large-jobs
● Consider to build statically to run large jobs  

○ There may be considerable startup delays for running large jobs of 
dynamic executables

● Consider to use shifter for large jobs using shared libraries
● Consider to use burst buffer for jobs doing large IO

https://docs.nersc.gov/jobs/best-practices/#large-jobs
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Other Running Jobs Considerations
● Remember to compile separately for each type of compute nodes 
● Running jobs from global homes is strongly discouraged

○ IO is not optimized
○ The global homes file system access on compute nodes is much slower than 

from $SCRATCH
○ It may also cause negative impact for other users interactive response on the 

system

● Consider to put your project’s shared software in 
/global/common/software/<project>
○ It is mounted read-only on compute nodes, so has less impact than other 

GPFS file systems (global homes or community file system)

● Consider to adopt workflow tools for better managing your jobs



  

Data Analytics Software and Services
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Cori’s Data Friendly Features 
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Production Data Software Stack
Capabilities Technologies

Data Transfer + Access

Workflows

Data Management

Data Analytics

Data Visualization

TaskFarmer
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Data Analytic Software Services
● Globus Online
● Science Gateways
● Databases
● Shifter  
● Burst Buffer 
● Python
● Jupyter
● Machine Learning / Deep Learning
● Workflows 
● And more …
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Globus Online: Move Data
● https://www.globus.org    https://docs.nersc.gov/services/globus/
● The recommended tool for moving data in&out of NERSC

○ Reliable & easy-to-use web-based service: 
■ Automatic retries 
■ Email notification of success or failure

○ NERSC managed endpoints for optimized data transfers
■ NERSC DTN (dedicated data transfer system), NERS Cori, NERSC 

HPSS, etc.
○ Other Center has endpoints
○ Setup Globus Connect Personal to ease transfer between local 

system (such as laptop) and NERSC systems
○

https://www.globus.org
https://docs.nersc.gov/services/globus/
https://app.globus.org/file-manager/gcp
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Globus File Transfer Example
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Data Transfer General Tips
● Use Globus Online for large, automated or monitored 

transfers
● cp, scp, or rsync is fine for smaller, one-time transfers 

(<100 MB)
○ But note that Globus is also fine for small transfers

● Use give-and-take to share files between NERSC users
○ % give -u <receiving_user> <file or directory>
○ % take -u <sending_user> <filename>   
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Access for External Collaborators  
● Web Portals

○ NERSC supports project-level public http access
■ Project specific area can be created:

/global/cfs/cdirs/<your_project>/www
■ These are available for public access under the URL:

http://portal.nersc.gov/cfs/<your_project> 

○ Each repo has a /project space, can publish as above
● Special Science Gateways can be created.  Sophisticated ones can be 

made with SPIN: https://docs.nersc.gov/services/spin/getting_started/ 
○ Details at: https://docs.nersc.gov/services/science-gateways/

https://docs.nersc.gov/services/spin/getting_started/
https://docs.nersc.gov/services/science-gateways/
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● Relational / SQL Databases
○ MySQL and PostgreSQL, good for:

 structured data (have a ‘Schema’)
 Relational (tables of rows and columns)
 Mid-Size, <= several GB in total

● NoSQL / Schema-less Databases
○ MongoDB, good for:

 Un-Structured Data (‘Schema-less’)
 Mid-Size to Large, e.g. 10 GB of Text

● More info and how to request a database: 
https://docs.nersc.gov/services/databases/

Databases

https://docs.nersc.gov/services/databases/
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Shifter 

● NERSC R&D effort, in collaboration with Cray, to support 
Docker Application images

● “Docker-like” functionality on the Cray and HPC Linux clusters. 
Enables users to run custom environments on HPC systems.

● Addresses security issues in a robust way
● Efficient job-start & Native application performance

https://docs.nersc.gov/development/shifter/how-to-use/

https://docs.nersc.gov/development/shifter/how-to-use/
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Shifter Accelerates Python Applications
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Create an Image with Docker
FROM ubuntu:14.04
MAINTAINER Shane Canon scanon@lbl.gov
# Update packages and install dependencies
RUN apt-update –y && \
   apt-get install -y build-essential

# Copy in the application
ADD . /myapp
# Build it
RUN cd /myapp && \
    make && make install

Dockerfile

laptop> docker build -t scanon/myapp:1.1 .
laptop> docker push scanon/myapp:1.1
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Use the Image with Shifter
#!/bin/bash

#SBATCH -N 16 -t 20 

#SBATCH --image=scanon/myapp:1.1

module load shifter

export TMPDIR=/mnt

srun -n 16 shifter /myapp/app

cori> shifterimg pull scanon/myapp:1.1
cori> sbatch ./job.sl

Submit script
job.sl
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Use Burst Buffer for Faster IO
● Cori has 1.8PB of SSD-based “Burst Buffer” to support I/O 

intensive workloads
● Jobs can request a job-temporary BB filesystem, or a persistent 

(up to a few weeks) reservation for multiple jobs to use

● https://docs.nersc.gov/jobs/examples/#burst-buffer

https://docs.nersc.gov/jobs/examples/#burst-buffer
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- 71 -

● ‘type=scratch’ – duration just for compute job (i.e. not ‘persistent’)
● ‘access_mode=striped’ – visible to all compute nodes and striped across 

multiple BB nodes 
● Data ‘stage_in’ before job start and ‘stage_out’ after

#!/bin/bash
#SBATCH –q regular -N 10 -C haswell –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=scratch
#DW stage_in source=$SCRATCH/inputs destination=$DW_JOB_STRIPED/inputs \ type=directory
#DW stage_in source=$SCRATCH/file.dat destination=$DW_JOB_STRIPED/ type=file
#DW stage_out source=$DW_JOB_STRIPED/outputs destination=/lustre/outputs \  type=directory
srun my.x --indir=$DW_JOB_STRIPED/inputs --infile=$DW_JOB_STRIPED/file.dat \  
--outdir=$DW_JOB_STRIPED/outputs

Burst Buffer Example
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Python
● Extremely popular interpreted language, continuing to grow 
● Libraries like NumPy, SciPy, scikit-learn commonly used for 

scientific analysis
● Are used for ML/DL
● Python is fully supported at NERSC - we use Anaconda 

Python to provide pre-built environments and the ability for 
users to create their own environments

● Do not use /usr/bin/python, instead:
       module load python
       which already includes basic packages: numpy, scipy, mpi4py
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Make Your Own Python Conda Environment
● To make a custom env

module load python
conda create -n myenv python=3.7
source activate myenv
conda (or pip) install your_custom_package
###import antigravity
source deactivate myenv

● To use the custom env later
source activate mynev   (# does not change your dot file 
setup) 
or 
conda activate myenv    (# changes your dot file setup)
<...steps to use this conda env ... >
conda deactivate myenv
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Options to Run Python Code in Parallel
● Multiprocessing

○ Single node only, process parallelism via a pool of workers
● Dask

○ Single or many nodes, framework to create a group of workers that execute tasks 
coordinated by a scheduler, nice visualization tools

● mpi4py
○ Single or many nodes, best performance when used together with a container 

(Docker/Shifter)
○ Do not pip install mpi4py or conda install mpi4py, follow instructions at 

https://docs.nersc.gov/development/languages/python/mpi4py/#mpi4py-in-your-custo
m-conda-environment

● https://docs.nersc.gov/development/languages/python/scaling-up/

https://docs.nersc.gov/development/languages/python/mpi4py/#mpi4py-in-your-custom-conda-environment
https://docs.nersc.gov/development/languages/python/mpi4py/#mpi4py-in-your-custom-conda-environment
https://docs.nersc.gov/development/languages/python/scaling-up/
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What is Jupyter?
Interactive open-source web application

Allows you to create and share documents, “notebooks,” containing:
Live code
Equations
Visualizations
Narrative text
Interactive widgets

Things you can use Jupyter notebooks for:
Data cleaning and data transformation
Numerical simulation
Statistical modeling
Data visualization
Machine learning
Workflows and analytics frameworks
Training and Tutorials



76

Your Own Custom Jupyter Kernel
Most common Jupyter question:

“How do I take a conda environment and use it from Jupyter?”

Several ways to accomplish this, here’s the easy one.

  $ module load python
  $ conda create -n myenv python=3.7
  $ source activate myenv
  (myenv) $ conda install ipykernel <other-packages>...
  (myenv) $ python -m ipykernel install --user --name myenv-jupyter

Point your browser to jupyter.nersc.gov.
(You may need to restart your notebook server via control panel).
Kernel “myenv-jupyter” should be present in the kernel list.



77

Additional Customization
{
 "argv": [
  "/global/homes/y/yunhe/jupyter-helper.sh",
  "-f",
  "{connection_file}"
 ],
 "display_name": "myenv-jupyter2",
 "language": "python",
}

Meanwhile, in jupyter-helper.sh:
#!/bin/bash
export SOMETHING=123
module load texlive
exec python -m ipykernel "$@”

The helper script is the most flexible 
approach for NERSC users since it 
easily enables modules.
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Need to request access for exclusive CPU, and GPU nodes

Available Notebook Servers 
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Available Jupyter Kernels

Your own custom 
kernels

And many NERSC 
provided kernels: 
Python, Julia, ML/DL 
packages etc.



80

NERSC Deep Learning Software Stack Overview 
General strategy:

● Provide functional, performant installations of the 
most popular frameworks and libraries

● Enable flexibility for users to customize and deploy 
their own solutions

Frameworks:

Distributed training libraries:
● Horovod
● PyTorch distributed
● Cray Plugin

Productive tools and services:
● Jupyter, Shifter
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How to Use NERSC DL Software Stack
We have modules you can load which contain python and DL libraries:

module load tensorflow/intel-2.1.0-py37

module load pytorch/v1.5.0

Check which software versions are available with:
module avail tensorflow

You can install your own packages on top to customize:
pip install --user MY-PACKAGE 

Or you can create your conda environments from scratch:
conda create -n my-env MY-PACKAGES

More on how to customize your setup can be found in the docs (TensorFlow, PyTorch).
We also have pre-installed Jupyter kernels.          

https://docs.nersc.gov/analytics/machinelearning/tensorflow/#customizing-environments
https://docs.nersc.gov/analytics/machinelearning/pytorch/#customizing-environments
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Jupyter for Deep Learning 
JupyterHub service provides a rich,
interactive notebook ecosystem on Cori
● Very popular service with hundreds of users
● A favorite way for users to develop ML code

Users can run their deep learning workloads
● on Cori CPU and Cori GPU
● using our pre-installed DL software kernels
● using their own custom kernels
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https://docs.nersc.gov/services/jupyter/#conda-environments-as-kernels


  

NERSC Online Resources
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Online Resources: Classic NERSC Page
● https://www.nersc.gov
● Science, News, Publications
● Contact Us
● Live Status (MOTD): 

https://www.nersc.gov/live-status/
motd/

● Training Events: 
https://www.nersc.gov/users/train
ing/events/

● YouTube channel: NERSC
● NERSC users Slack channel

○ https://www.nersc.gov/users/NU
G/nersc-users-slack/

https://www.nersc.gov
https://www.nersc.gov/live-status/motd/
https://www.nersc.gov/live-status/motd/
http://www.nersc.gov/users/training/events/
http://www.nersc.gov/users/training/events/
https://www.nersc.gov/users/NUG/nersc-users-slack/
https://www.nersc.gov/users/NUG/nersc-users-slack/
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Online Resources: NERSC Docs
Technical Documentations

       https://docs.nersc.gov
 
● Accounts
● IRIS
● Connecting
● Programming
● Running Jobs 
● Applications 
● Storage Systems
● Analytics
● Performance 
● ... https://docs.nersc.gov/getting-started/

https://docs.nersc.gov
https://docs.nersc.gov/getting-started/
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Online Resources: NERSC Docs
Technical Documentations

       https://docs.nersc.gov
 
● Getting Started

https://docs.nersc.gov/getting-started/

● IRIS
● Systems
● Connecting
● Environment
● Development
● Running Jobs 
● Applications 
● Analytics
● Machine Learning
● Performance

...

https://docs.nersc.gov
https://docs.nersc.gov/getting-started/
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Online Resources: IRIS 

● IRIS: NERSC Account Management and Reporting: 
https://iris.nersc.gov

○ Change password
○ Change contact info
○ SSH Keys, MFA
○ Check usage info

https://iris.nersc.gov
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Online Resources: Help Portal

 https://help.nersc.gov
● Submit tickets (ask questions)
● Request forms:

○ Quota Increase
○ Reservations

● Allocation (ERCAP) Requests

Open a ticket

All my tickets

My project’s 
open tickets

https://help.nersc.gov/
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Online Resources: MyNERSC
 https://my.nersc.gov
● Dashboard
● Jobs
● Center Status
● File Browser
● Service Tickets
● Data Dashboard
● Jupyter Hub
● Links to other useful 

pages

https://help.nersc.gov/
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https://my.nersc.gov Leads You to All Sites

iris.nersc.gov

docs.nersc.gov

www.nersc.gov

jupyter.nersc.gov

help.nersc.gov
my disk quota

is cori up?

my jobs

https://my.nersc.gov
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Online Resources: Cori GPU Documentation
 https://docs-dev.nersc.gov
● GPU nodes

○ Hardware info
○ Slurm access
○ Usage
○ Software

■ Compilers 
■ Math libraries
■ Python
■ Shifter
■ Profiling

○ Examples

https://docs-dev.nersc.gov
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Acknowledgement 
● Used / adapted some slides and materials from the 

NERSC New user training (June 16, 2020)
○ https://www.nersc.gov/users/training/events/new-user-

training-june-16-2020/

https://www.nersc.gov/users/training/events/new-user-training-june-16-2020/
https://www.nersc.gov/users/training/events/new-user-training-june-16-2020/


  

Hands-on Exercises
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Hands-on Exercises  
● % cd $SCRATCH
● % cp -r /global/cfs/cdirs/training/2021/CSSS .   

○ Notice the space and the last dot in the above command
● % cd CSSS
● Follow:

○ hello-exercise.README
○ matrix-example.README
○ xthi-exercise.README

● References
○ Running Jobs: https://docs.nersc.gov/jobs/
○ Interactive Jobs: https://docs.nersc.gov/jobs/examples/#interactive

https://docs.nersc.gov/jobs/
https://docs.nersc.gov/jobs/
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Using Compute Node Reservations

● Existing NERSC users are added to “nintern” project
● Cori node reservations available from 2-3:30 pm today
● User reservations with --reservation=xxx -A yyy, where

○ xxx is “intro_haswell” or “intro_knl”
○ yyy is “nintern” (existing users) or “ntrain” (trainxxx users)
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Thank You 


